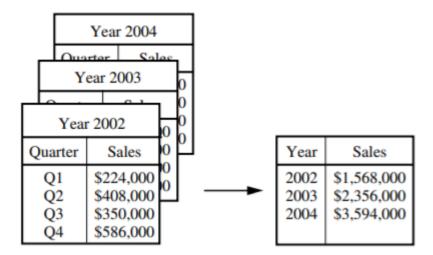
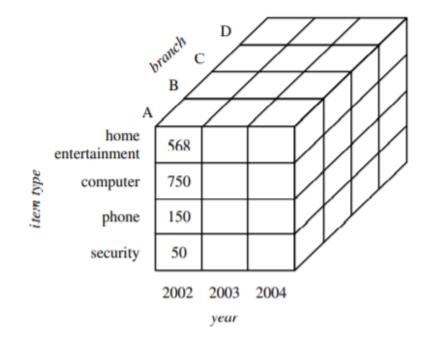
Strategies of Data Reduction

- Data Cube Aggregation
- **Attribute Subset Selection**
- **Dimensionality Reduction**
- **Numerosity Reduction**
- **Discretization and Concept Hierarchy Generation**




Data Cube Aggregation

Data Cube Aggregation

Aggregation operations are applied to the data in the construction of the data cube

Data Cube Aggregation : Example

(ESTD-1995)

Attribute Subset Selection

"where irrelevant, weakly relevant, or redundant attributes or dimensions may be detected and removed."

- Reduces the dataset size
- Minimum set of attributes

Attribute Subset Selection

- 1. Stepwise forward selection
- 2. Stepwise backward elimination
- 3. Combination of forward selection and backward elimination
- 4. Decision tree induction

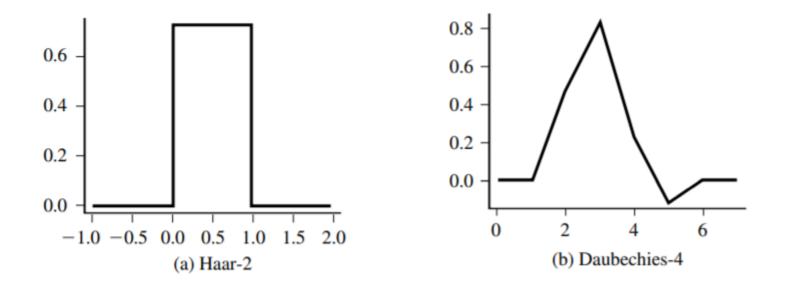
Initial attribute set: Initial attribute set: Initial attribute set: Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ Initial reduced set: $=>$ $\{A_1, A_3, A_4, A_5, A_6\}$ $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ $\{\}$ $=>$ $\{A_1, A_3, A_4, A_5, A_6\}$ A_4 ?	Forward selection	Backward elimination	Decision tree induction
$ => \{A_1\} $ $ => \{A_1, A_4\} $ $ => \text{Reduced attribute set:} $ $ \{A_1, A_4, A_6\} $ $ => \text{Reduced attribute set:} $ $ \{A_1, A_4, A_6\} $ $ A_1? $ $ A_6? $ $ Y$ $ Class 1 $ $ Class 2 $ $ Class 1 $ $ Class 2 $ $ => \text{Reduced attribute set:} $ $ \{A_1, A_4, A_6\} $	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ Initial reduced set: $\{\}$ $=> \{A_1\}$ $=> \{A_1, A_4\}$ => Reduced attribute set:	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_3, A_4, A_5, A_6\}$ => $\{A_1, A_4, A_5, A_6\}$ => Reduced attribute set:	Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$

Dimensionality Reduction

Data encoding or transformation methods are applied – to obtain either a reduced or compressed representation of the original data

Lossless methods Lossy methods

Effective methods for Lossy Dimensionality Reduction



Wavelet Transformation

Principal Components Analysis

The discrete wavelet transform (DWT) is a linear signal processing technique that, when applied to a data vector X, transforms it to a numerically different vector, X0, of wavelet coefficients

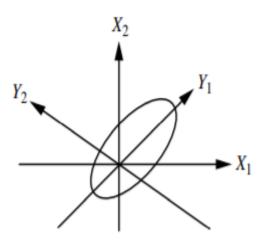
Principal Components Analysis

The original data are thus projected onto a much smaller space, resulting in dimensionality reduction.

Unlike attribute subset selection, which reduces the attribute set size by retaining a subset of the initial set of attributes

searches for k n-dimensional orthogonal vectors that can best be used to represent the data, where $k \le n$.

Principal Components Analysis



The basic procedure is as follows:

- 1. The input data are normalized, so that each attribute falls within the same range
- 2. PCA computes k orthonormal vectors that provide a basis for the normalized input data.
- 3. The principal components are sorted in order of decreasing "significance" or strength.
- 4. Because the components are sorted according to decreasing order of "significance," the size of the data can be reduced by eliminating the weaker components

Principal Components Analysis

Principal components analysis. Y_1 and Y_2 are the first two principal components for the given data.